bcm54140网络phy linux驱动

内容分享2天前发布
0 0 0

// SPDX-License-Identifier: GPL-2.0+
/* Broadcom BCM54140 Quad SGMII/QSGMII Copper/Fiber Gigabit PHY
*

*/

#include <linux/bitfield.h>
#include <linux/brcmphy.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/phy.h>

#include “bcm-phy-lib.h”

/* RDB per-port registers
/
#define BCM54140_RDB_ISR 0x00a /
interrupt status /
#define BCM54140_RDB_IMR 0x00b /
interrupt mask /
#define BCM54140_RDB_INT_LINK BIT(1) /
link status changed /
#define BCM54140_RDB_INT_SPEED BIT(2) /
link speed change /
#define BCM54140_RDB_INT_DUPLEX BIT(3) /
duplex mode changed /
#define BCM54140_RDB_SPARE1 0x012 /
spare control 1 /
#define BCM54140_RDB_SPARE1_LSLM BIT(2) /
link speed LED mode /
#define BCM54140_RDB_SPARE2 0x014 /
spare control 2 /
#define BCM54140_RDB_SPARE2_WS_RTRY_DIS BIT(8) /
wirespeed retry disable /
#define BCM54140_RDB_SPARE2_WS_RTRY_LIMIT GENMASK(4, 2) /
retry limit /
#define BCM54140_RDB_SPARE3 0x015 /
spare control 3 /
#define BCM54140_RDB_SPARE3_BIT0 BIT(0)
#define BCM54140_RDB_LED_CTRL 0x019 /
LED control /
#define BCM54140_RDB_LED_CTRL_ACTLINK0 BIT(4)
#define BCM54140_RDB_LED_CTRL_ACTLINK1 BIT(8)
#define BCM54140_RDB_C_APWR 0x01a /
auto power down control /
#define BCM54140_RDB_C_APWR_SINGLE_PULSE BIT(8) /
single pulse /
#define BCM54140_RDB_C_APWR_APD_MODE_DIS 0 /
ADP disable /
#define BCM54140_RDB_C_APWR_APD_MODE_EN 1 /
ADP enable /
#define BCM54140_RDB_C_APWR_APD_MODE_DIS2 2 /
ADP disable /
#define BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG 3 /
ADP enable w/ aneg /
#define BCM54140_RDB_C_APWR_APD_MODE_MASK GENMASK(6, 5)
#define BCM54140_RDB_C_APWR_SLP_TIM_MASK BIT(4)/
sleep timer /
#define BCM54140_RDB_C_APWR_SLP_TIM_2_7 0 /
2.7s /
#define BCM54140_RDB_C_APWR_SLP_TIM_5_4 1 /
5.4s /
#define BCM54140_RDB_C_PWR 0x02a /
copper power control /
#define BCM54140_RDB_C_PWR_ISOLATE BIT(5) /
super isolate mode /
#define BCM54140_RDB_C_MISC_CTRL 0x02f /
misc copper control /
#define BCM54140_RDB_C_MISC_CTRL_WS_EN BIT(4) /
wirespeed enable */

/* RDB global registers
/
#define BCM54140_RDB_TOP_IMR 0x82d /
interrupt mask /
#define BCM54140_RDB_TOP_IMR_PORT0 BIT(4)
#define BCM54140_RDB_TOP_IMR_PORT1 BIT(5)
#define BCM54140_RDB_TOP_IMR_PORT2 BIT(6)
#define BCM54140_RDB_TOP_IMR_PORT3 BIT(7)
#define BCM54140_RDB_MON_CTRL 0x831 /
monitor control /
#define BCM54140_RDB_MON_CTRL_V_MODE BIT(3) /
voltage mode /
#define BCM54140_RDB_MON_CTRL_SEL_MASK GENMASK(2, 1)
#define BCM54140_RDB_MON_CTRL_SEL_TEMP 0 /
meassure temperature /
#define BCM54140_RDB_MON_CTRL_SEL_1V0 1 /
meassure AVDDL 1.0V /
#define BCM54140_RDB_MON_CTRL_SEL_3V3 2 /
meassure AVDDH 3.3V /
#define BCM54140_RDB_MON_CTRL_SEL_RR 3 /
meassure all round-robin /
#define BCM54140_RDB_MON_CTRL_PWR_DOWN BIT(0) /
power-down monitor /
#define BCM54140_RDB_MON_TEMP_VAL 0x832 /
temperature value /
#define BCM54140_RDB_MON_TEMP_MAX 0x833 /
temperature high thresh /
#define BCM54140_RDB_MON_TEMP_MIN 0x834 /
temperature low thresh /
#define BCM54140_RDB_MON_TEMP_DATA_MASK GENMASK(9, 0)
#define BCM54140_RDB_MON_1V0_VAL 0x835 /
AVDDL 1.0V value /
#define BCM54140_RDB_MON_1V0_MAX 0x836 /
AVDDL 1.0V high thresh /
#define BCM54140_RDB_MON_1V0_MIN 0x837 /
AVDDL 1.0V low thresh /
#define BCM54140_RDB_MON_1V0_DATA_MASK GENMASK(10, 0)
#define BCM54140_RDB_MON_3V3_VAL 0x838 /
AVDDH 3.3V value /
#define BCM54140_RDB_MON_3V3_MAX 0x839 /
AVDDH 3.3V high thresh /
#define BCM54140_RDB_MON_3V3_MIN 0x83a /
AVDDH 3.3V low thresh /
#define BCM54140_RDB_MON_3V3_DATA_MASK GENMASK(11, 0)
#define BCM54140_RDB_MON_ISR 0x83b /
interrupt status /
#define BCM54140_RDB_MON_ISR_3V3 BIT(2) /
AVDDH 3.3V alarm /
#define BCM54140_RDB_MON_ISR_1V0 BIT(1) /
AVDDL 1.0V alarm /
#define BCM54140_RDB_MON_ISR_TEMP BIT(0) /
temperature alarm */

/* According to the datasheet the formula is:

T = 413.35 – (0.49055 * bits[9:0])
*/
#define BCM54140_HWMON_TO_TEMP(v) (413350L – (v) * 491)
#define BCM54140_HWMON_FROM_TEMP(v) DIV_ROUND_CLOSEST_ULL(413350L – (v), 491)

/* According to the datasheet the formula is:

U = bits[11:0] / 1024 * 220 / 0.2Normalized:U = bits[11:0] / 4096 * 2514
*/
#define BCM54140_HWMON_TO_IN_1V0(v) ((v) * 2514 >> 11)
#define BCM54140_HWMON_FROM_IN_1V0(v) DIV_ROUND_CLOSEST_ULL(((v) << 11), 2514)

/* According to the datasheet the formula is:

U = bits[10:0] / 1024 * 880 / 0.7Normalized:U = bits[10:0] / 2048 * 4400
*/
#define BCM54140_HWMON_TO_IN_3V3(v) ((v) * 4400 >> 12)
#define BCM54140_HWMON_FROM_IN_3V3(v) DIV_ROUND_CLOSEST_ULL(((v) << 12), 4400)

#define BCM54140_HWMON_TO_IN(ch, v) ((ch) ? BCM54140_HWMON_TO_IN_3V3(v)
BCM54140_HWMON_TO_IN_1V0(v))
#define BCM54140_HWMON_FROM_IN(ch, v) ((ch) ? BCM54140_HWMON_FROM_IN_3V3(v) : BCM54140_HWMON_FROM_IN_1V0(v))
#define BCM54140_HWMON_IN_MASK(ch) ((ch) ? BCM54140_RDB_MON_3V3_DATA_MASK
BCM54140_RDB_MON_1V0_DATA_MASK)
#define BCM54140_HWMON_IN_VAL_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_VAL : BCM54140_RDB_MON_1V0_VAL)
#define BCM54140_HWMON_IN_MIN_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MIN : BCM54140_RDB_MON_1V0_MIN)
#define BCM54140_HWMON_IN_MAX_REG(ch) ((ch) ? BCM54140_RDB_MON_3V3_MAX : BCM54140_RDB_MON_1V0_MAX)
#define BCM54140_HWMON_IN_ALARM_BIT(ch) ((ch) ? BCM54140_RDB_MON_ISR_3V3 : BCM54140_RDB_MON_ISR_1V0)

/* This PHY has two different PHY IDs depening on its MODE_SEL pin. This

pin choses between 4x SGMII and QSGMII mode:AE02_5009 4x SGMIIAE02_5019 QSGMII
*/
#define BCM54140_PHY_ID_MASK 0xffffffe8

#define BCM54140_PHY_ID_REV(phy_id) ((phy_id) & 0x7)
#define BCM54140_REV_B0 1

#define BCM54140_DEFAULT_DOWNSHIFT 5
#define BCM54140_MAX_DOWNSHIFT 9

struct bcm54140_priv {
int port;
int base_addr;
#if IS_ENABLED(CONFIG_HWMON)
/* protect the alarm bits */
struct mutex alarm_lock;
u16 alarm;
#endif
};

#if IS_ENABLED(CONFIG_HWMON)
static umode_t bcm54140_hwmon_is_visible(const void *data,
enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_in:
switch (attr) {
case hwmon_in_min:
case hwmon_in_max:
return 0644;
case hwmon_in_label:
case hwmon_in_input:
case hwmon_in_alarm:
return 0444;
default:
return 0;
}
case hwmon_temp:
switch (attr) {
case hwmon_temp_min:
case hwmon_temp_max:
return 0644;
case hwmon_temp_input:
case hwmon_temp_alarm:
return 0444;
default:
return 0;
}
default:
return 0;
}
}

static int bcm54140_hwmon_read_alarm(struct device *dev, unsigned int bit,
long *val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
struct bcm54140_priv *priv = phydev->priv;
int tmp, ret = 0;


mutex_lock(&priv->alarm_lock);

/* latch any alarm bits */
tmp = bcm_phy_read_rdb(phydev, BCM54140_RDB_MON_ISR);
if (tmp < 0) {
	ret = tmp;
	goto out;
}
priv->alarm |= tmp;

*val = !!(priv->alarm & bit);
priv->alarm &= ~bit;

out:
mutex_unlock(&priv->alarm_lock);
return ret;
}

static int bcm54140_hwmon_read_temp(struct device *dev, u32 attr, long *val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 reg;
int tmp;


switch (attr) {
case hwmon_temp_input:
	reg = BCM54140_RDB_MON_TEMP_VAL;
	break;
case hwmon_temp_min:
	reg = BCM54140_RDB_MON_TEMP_MIN;
	break;
case hwmon_temp_max:
	reg = BCM54140_RDB_MON_TEMP_MAX;
	break;
case hwmon_temp_alarm:
	return bcm54140_hwmon_read_alarm(dev,
					 BCM54140_RDB_MON_ISR_TEMP,
					 val);
default:
	return -EOPNOTSUPP;
}

tmp = bcm_phy_read_rdb(phydev, reg);
if (tmp < 0)
	return tmp;

*val = BCM54140_HWMON_TO_TEMP(tmp & BCM54140_RDB_MON_TEMP_DATA_MASK);

return 0;

}

static int bcm54140_hwmon_read_in(struct device *dev, u32 attr,
int channel, long *val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 bit, reg;
int tmp;


switch (attr) {
case hwmon_in_input:
	reg = BCM54140_HWMON_IN_VAL_REG(channel);
	break;
case hwmon_in_min:
	reg = BCM54140_HWMON_IN_MIN_REG(channel);
	break;
case hwmon_in_max:
	reg = BCM54140_HWMON_IN_MAX_REG(channel);
	break;
case hwmon_in_alarm:
	bit = BCM54140_HWMON_IN_ALARM_BIT(channel);
	return bcm54140_hwmon_read_alarm(dev, bit, val);
default:
	return -EOPNOTSUPP;
}

tmp = bcm_phy_read_rdb(phydev, reg);
if (tmp < 0)
	return tmp;

tmp &= BCM54140_HWMON_IN_MASK(channel);
*val = BCM54140_HWMON_TO_IN(channel, tmp);

return 0;

}

static int bcm54140_hwmon_read(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, long *val)
{
switch (type) {
case hwmon_temp:
return bcm54140_hwmon_read_temp(dev, attr, val);
case hwmon_in:
return bcm54140_hwmon_read_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}

static const char *const bcm54140_hwmon_in_labels[] = {
“AVDDL”,
“AVDDH”,
};

static int bcm54140_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
switch (type) {
case hwmon_in:
switch (attr) {
case hwmon_in_label:
*str = bcm54140_hwmon_in_labels[channel];
return 0;
default:
return -EOPNOTSUPP;
}
default:
return -EOPNOTSUPP;
}
}

static int bcm54140_hwmon_write_temp(struct device *dev, u32 attr,
int channel, long val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 mask = BCM54140_RDB_MON_TEMP_DATA_MASK;
u16 reg;


val = clamp_val(val, BCM54140_HWMON_TO_TEMP(mask),
		BCM54140_HWMON_TO_TEMP(0));

switch (attr) {
case hwmon_temp_min:
	reg = BCM54140_RDB_MON_TEMP_MIN;
	break;
case hwmon_temp_max:
	reg = BCM54140_RDB_MON_TEMP_MAX;
	break;
default:
	return -EOPNOTSUPP;
}

return bcm_phy_modify_rdb(phydev, reg, mask,
			  BCM54140_HWMON_FROM_TEMP(val));

}

static int bcm54140_hwmon_write_in(struct device *dev, u32 attr,
int channel, long val)
{
struct phy_device *phydev = dev_get_drvdata(dev);
u16 mask = BCM54140_HWMON_IN_MASK(channel);
u16 reg;


val = clamp_val(val, 0, BCM54140_HWMON_TO_IN(channel, mask));

switch (attr) {
case hwmon_in_min:
	reg = BCM54140_HWMON_IN_MIN_REG(channel);
	break;
case hwmon_in_max:
	reg = BCM54140_HWMON_IN_MAX_REG(channel);
	break;
default:
	return -EOPNOTSUPP;
}

return bcm_phy_modify_rdb(phydev, reg, mask,
			  BCM54140_HWMON_FROM_IN(channel, val));

}

static int bcm54140_hwmon_write(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, long val)
{
switch (type) {
case hwmon_temp:
return bcm54140_hwmon_write_temp(dev, attr, channel, val);
case hwmon_in:
return bcm54140_hwmon_write_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}

static const struct hwmon_channel_info *bcm54140_hwmon_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_MIN | HWMON_T_MAX |
HWMON_T_ALARM),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX |
HWMON_I_ALARM | HWMON_I_LABEL),
NULL
};

static const struct hwmon_ops bcm54140_hwmon_ops = {
.is_visible = bcm54140_hwmon_is_visible,
.read = bcm54140_hwmon_read,
.read_string = bcm54140_hwmon_read_string,
.write = bcm54140_hwmon_write,
};

static const struct hwmon_chip_info bcm54140_chip_info = {
.ops = &bcm54140_hwmon_ops,
.info = bcm54140_hwmon_info,
};

static int bcm54140_enable_monitoring(struct phy_device *phydev)
{
u16 mask, set;


/* 3.3V voltage mode */
set = BCM54140_RDB_MON_CTRL_V_MODE;

/* select round-robin */
mask = BCM54140_RDB_MON_CTRL_SEL_MASK;
set |= FIELD_PREP(BCM54140_RDB_MON_CTRL_SEL_MASK,
		  BCM54140_RDB_MON_CTRL_SEL_RR);

/* remove power-down bit */
mask |= BCM54140_RDB_MON_CTRL_PWR_DOWN;

return bcm_phy_modify_rdb(phydev, BCM54140_RDB_MON_CTRL, mask, set);

}

static int bcm54140_probe_once(struct phy_device *phydev)
{
struct device *hwmon;
int ret;


/* enable hardware monitoring */
ret = bcm54140_enable_monitoring(phydev);
if (ret)
	return ret;

hwmon = devm_hwmon_device_register_with_info(&phydev->mdio.dev,
					     "BCM54140", phydev,
					     &bcm54140_chip_info,
					     NULL);
return PTR_ERR_OR_ZERO(hwmon);

}
#endif

static int bcm54140_base_read_rdb(struct phy_device *phydev, u16 rdb)
{
int ret;


phy_lock_mdio_bus(phydev);
ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (ret < 0)
	goto out;

ret = __phy_package_read(phydev, MII_BCM54XX_RDB_DATA);

out:
phy_unlock_mdio_bus(phydev);
return ret;
}

static int bcm54140_base_write_rdb(struct phy_device *phydev,
u16 rdb, u16 val)
{
int ret;


phy_lock_mdio_bus(phydev);
ret = __phy_package_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (ret < 0)
	goto out;

ret = __phy_package_write(phydev, MII_BCM54XX_RDB_DATA, val);

out:
phy_unlock_mdio_bus(phydev);
return ret;
}

/* Under some circumstances a core PLL may not lock, this will then prevent

a successful link establishment. Restart the PLL after the voltages are

stable to workaround this issue.
*/
static int bcm54140_b0_workaround(struct phy_device *phydev)
{
int spare3;
int ret;

spare3 = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE3);
if (spare3 < 0)
return spare3;

spare3 &= ~BCM54140_RDB_SPARE3_BIT0;

ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
if (ret)
return ret;

ret = phy_modify(phydev, MII_BMCR, 0, BMCR_PDOWN);
if (ret)
return ret;

ret = phy_modify(phydev, MII_BMCR, BMCR_PDOWN, 0);
if (ret)
return ret;

spare3 |= BCM54140_RDB_SPARE3_BIT0;

return bcm_phy_write_rdb(phydev, BCM54140_RDB_SPARE3, spare3);
}

/* The BCM54140 is a quad PHY where only the first port has access to the

global register. Thus we need to find out its PHY address.

*/
static int bcm54140_get_base_addr_and_port(struct phy_device *phydev)
{
struct bcm54140_priv *priv = phydev->priv;
struct mii_bus *bus = phydev->mdio.bus;
int addr, min_addr, max_addr;
int step = 1;
u32 phy_id;
int tmp;


min_addr = phydev->mdio.addr;
max_addr = phydev->mdio.addr;
addr = phydev->mdio.addr;

/* We scan forward and backwards and look for PHYs which have the
 * same phy_id like we do. Step 1 will scan forward, step 2
 * backwards. Once we are finished, we have a min_addr and
 * max_addr which resembles the range of PHY addresses of the same
 * type of PHY. There is one caveat; there may be many PHYs of
 * the same type, but we know that each PHY takes exactly 4
 * consecutive addresses. Therefore we can deduce our offset
 * to the base address of this quad PHY.
 */

while (1) {
	if (step == 3) {
		break;
	} else if (step == 1) {
		max_addr = addr;
		addr++;
	} else {
		min_addr = addr;
		addr--;
	}

	if (addr < 0 || addr >= PHY_MAX_ADDR) {
		addr = phydev->mdio.addr;
		step++;
		continue;
	}

	/* read the PHY id */
	tmp = mdiobus_read(bus, addr, MII_PHYSID1);
	if (tmp < 0)
		return tmp;
	phy_id = tmp << 16;
	tmp = mdiobus_read(bus, addr, MII_PHYSID2);
	if (tmp < 0)
		return tmp;
	phy_id |= tmp;

	/* see if it is still the same PHY */
	if ((phy_id & phydev->drv->phy_id_mask) !=
	    (phydev->drv->phy_id & phydev->drv->phy_id_mask)) {
		addr = phydev->mdio.addr;
		step++;
	}
}

/* The range we get should be a multiple of four. Please note that both
 * the min_addr and max_addr are inclusive. So we have to add one if we
 * subtract them.
 */
if ((max_addr - min_addr + 1) % 4) {
	dev_err(&phydev->mdio.dev,
		"Detected Quad PHY IDs %d..%d doesn't make sense.
",
		min_addr, max_addr);
	return -EINVAL;
}

priv->port = (phydev->mdio.addr - min_addr) % 4;
priv->base_addr = phydev->mdio.addr - priv->port;

return 0;

}

static int bcm54140_probe(struct phy_device *phydev)
{
struct bcm54140_priv *priv;
int ret;


priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
	return -ENOMEM;

phydev->priv = priv;

ret = bcm54140_get_base_addr_and_port(phydev);
if (ret)
	return ret;

devm_phy_package_join(&phydev->mdio.dev, phydev, priv->base_addr, 0);

#if IS_ENABLED(CONFIG_HWMON)
mutex_init(&priv->alarm_lock);


if (phy_package_init_once(phydev)) {
	ret = bcm54140_probe_once(phydev);
	if (ret)
		return ret;
}

#endif


phydev_dbg(phydev, "probed (port %d, base PHY address %d)
",
	   priv->port, priv->base_addr);

return 0;

}

static int bcm54140_config_init(struct phy_device *phydev)
{
u16 reg = 0xffff;
int ret;


/* Apply hardware errata */
if (BCM54140_PHY_ID_REV(phydev->phy_id) == BCM54140_REV_B0) {
	ret = bcm54140_b0_workaround(phydev);
	if (ret)
		return ret;
}

/* Unmask events we are interested in. */
reg &= ~(BCM54140_RDB_INT_DUPLEX |
	 BCM54140_RDB_INT_SPEED |
	 BCM54140_RDB_INT_LINK);
ret = bcm_phy_write_rdb(phydev, BCM54140_RDB_IMR, reg);
if (ret)
	return ret;

/* LED1=LINKSPD[1], LED2=LINKSPD[2], LED3=LINK/ACTIVITY */
ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE1,
			 0, BCM54140_RDB_SPARE1_LSLM);
if (ret)
	return ret;

ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_LED_CTRL,
			 0, BCM54140_RDB_LED_CTRL_ACTLINK0);
if (ret)
	return ret;

/* disable super isolate mode */
return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_PWR,
			  BCM54140_RDB_C_PWR_ISOLATE, 0);

}

static int bcm54140_did_interrupt(struct phy_device *phydev)
{
int ret;


ret = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);

return (ret < 0) ? 0 : ret;

}

static int bcm54140_ack_intr(struct phy_device *phydev)
{
int reg;


/* clear pending interrupts */
reg = bcm_phy_read_rdb(phydev, BCM54140_RDB_ISR);
if (reg < 0)
	return reg;

return 0;

}

static int bcm54140_config_intr(struct phy_device *phydev)
{
struct bcm54140_priv *priv = phydev->priv;
static const u16 port_to_imr_bit[] = {
BCM54140_RDB_TOP_IMR_PORT0, BCM54140_RDB_TOP_IMR_PORT1,
BCM54140_RDB_TOP_IMR_PORT2, BCM54140_RDB_TOP_IMR_PORT3,
};
int reg;


if (priv->port >= ARRAY_SIZE(port_to_imr_bit))
	return -EINVAL;

reg = bcm54140_base_read_rdb(phydev, BCM54140_RDB_TOP_IMR);
if (reg < 0)
	return reg;

if (phydev->interrupts == PHY_INTERRUPT_ENABLED)
	reg &= ~port_to_imr_bit[priv->port];
else
	reg |= port_to_imr_bit[priv->port];

return bcm54140_base_write_rdb(phydev, BCM54140_RDB_TOP_IMR, reg);

}

static int bcm54140_get_downshift(struct phy_device *phydev, u8 *data)
{
int val;


val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_MISC_CTRL);
if (val < 0)
	return val;

if (!(val & BCM54140_RDB_C_MISC_CTRL_WS_EN)) {
	*data = DOWNSHIFT_DEV_DISABLE;
	return 0;
}

val = bcm_phy_read_rdb(phydev, BCM54140_RDB_SPARE2);
if (val < 0)
	return val;

if (val & BCM54140_RDB_SPARE2_WS_RTRY_DIS)
	*data = 1;
else
	*data = FIELD_GET(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, val) + 2;

return 0;

}

static int bcm54140_set_downshift(struct phy_device *phydev, u8 cnt)
{
u16 mask, set;
int ret;


if (cnt > BCM54140_MAX_DOWNSHIFT && cnt != DOWNSHIFT_DEV_DEFAULT_COUNT)
	return -EINVAL;

if (!cnt)
	return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
				  BCM54140_RDB_C_MISC_CTRL_WS_EN, 0);

if (cnt == DOWNSHIFT_DEV_DEFAULT_COUNT)
	cnt = BCM54140_DEFAULT_DOWNSHIFT;

if (cnt == 1) {
	mask = 0;
	set = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
} else {
	mask = BCM54140_RDB_SPARE2_WS_RTRY_DIS;
	mask |= BCM54140_RDB_SPARE2_WS_RTRY_LIMIT;
	set = FIELD_PREP(BCM54140_RDB_SPARE2_WS_RTRY_LIMIT, cnt - 2);
}
ret = bcm_phy_modify_rdb(phydev, BCM54140_RDB_SPARE2,
			 mask, set);
if (ret)
	return ret;

return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_MISC_CTRL,
			  0, BCM54140_RDB_C_MISC_CTRL_WS_EN);

}

static int bcm54140_get_edpd(struct phy_device *phydev, u16 *tx_interval)
{
int val;


val = bcm_phy_read_rdb(phydev, BCM54140_RDB_C_APWR);
if (val < 0)
	return val;

switch (FIELD_GET(BCM54140_RDB_C_APWR_APD_MODE_MASK, val)) {
case BCM54140_RDB_C_APWR_APD_MODE_DIS:
case BCM54140_RDB_C_APWR_APD_MODE_DIS2:
	*tx_interval = ETHTOOL_PHY_EDPD_DISABLE;
	break;
case BCM54140_RDB_C_APWR_APD_MODE_EN:
case BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG:
	switch (FIELD_GET(BCM54140_RDB_C_APWR_SLP_TIM_MASK, val)) {
	case BCM54140_RDB_C_APWR_SLP_TIM_2_7:
		*tx_interval = 2700;
		break;
	case BCM54140_RDB_C_APWR_SLP_TIM_5_4:
		*tx_interval = 5400;
		break;
	}
}

return 0;

}

static int bcm54140_set_edpd(struct phy_device *phydev, u16 tx_interval)
{
u16 mask, set;


mask = BCM54140_RDB_C_APWR_APD_MODE_MASK;
if (tx_interval == ETHTOOL_PHY_EDPD_DISABLE)
	set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
			 BCM54140_RDB_C_APWR_APD_MODE_DIS);
else
	set = FIELD_PREP(BCM54140_RDB_C_APWR_APD_MODE_MASK,
			 BCM54140_RDB_C_APWR_APD_MODE_EN_ANEG);

/* enable single pulse mode */
set |= BCM54140_RDB_C_APWR_SINGLE_PULSE;

/* set sleep timer */
mask |= BCM54140_RDB_C_APWR_SLP_TIM_MASK;
switch (tx_interval) {
case ETHTOOL_PHY_EDPD_DFLT_TX_MSECS:
case ETHTOOL_PHY_EDPD_DISABLE:
case 2700:
	set |= BCM54140_RDB_C_APWR_SLP_TIM_2_7;
	break;
case 5400:
	set |= BCM54140_RDB_C_APWR_SLP_TIM_5_4;
	break;
default:
	return -EINVAL;
}

return bcm_phy_modify_rdb(phydev, BCM54140_RDB_C_APWR, mask, set);

}

static int bcm54140_get_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return bcm54140_get_downshift(phydev, data);
case ETHTOOL_PHY_EDPD:
return bcm54140_get_edpd(phydev, data);
default:
return -EOPNOTSUPP;
}
}

static int bcm54140_set_tunable(struct phy_device *phydev,
struct ethtool_tunable *tuna, const void *data)
{
switch (tuna->id) {
case ETHTOOL_PHY_DOWNSHIFT:
return bcm54140_set_downshift(phydev, *(const u8 *)data);
case ETHTOOL_PHY_EDPD:
return bcm54140_set_edpd(phydev, *(const u16 *)data);
default:
return -EOPNOTSUPP;
}
}

static struct phy_driver bcm54140_drivers[] = {
{
.phy_id = PHY_ID_BCM54140,
.phy_id_mask = BCM54140_PHY_ID_MASK,
.name = “Broadcom BCM54140”,
.flags = PHY_POLL_CABLE_TEST,
.features = PHY_GBIT_FEATURES,
.config_init = bcm54140_config_init,
.did_interrupt = bcm54140_did_interrupt,
.ack_interrupt = bcm54140_ack_intr,
.config_intr = bcm54140_config_intr,
.probe = bcm54140_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.soft_reset = genphy_soft_reset,
.get_tunable = bcm54140_get_tunable,
.set_tunable = bcm54140_set_tunable,
.cable_test_start = bcm_phy_cable_test_start_rdb,
.cable_test_get_status = bcm_phy_cable_test_get_status_rdb,
},
};
module_phy_driver(bcm54140_drivers);

static struct mdio_device_id __maybe_unused bcm54140_tbl[] = {
{ PHY_ID_BCM54140, BCM54140_PHY_ID_MASK },
{ }
};

MODULE_AUTHOR(“qq:459722549”);
MODULE_DESCRIPTION(“Broadcom BCM54140 PHY driver”);
MODULE_DEVICE_TABLE(mdio, bcm54140_tbl);
MODULE_LICENSE(“GPL”);

© 版权声明

相关文章

暂无评论

none
暂无评论...